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Abstract

This study documents the first Orange County application of oxygen isometry to estimate
season of death in shellfish. The shellfish seasonality technique has been validated in tests
against shellfish specimens with known month of death. δ18O values for calcite samples from
14 Mytilus californianus specimens indicate that shellfish procurement was predominantly a
summer to autumn activity at ORA-855, the historic site of Putuidem. Our data do not support
the oft-held view that winter was a season of heightened shellfishing occasioned by diminished
food stores in lean times. Experimental stable isotope measurements using two Protothaca
staminea specimens suggest the possibility that these species might be employed to generate
seasonal information.

Introduction

In some prehistoric cultures, shellfish constituted a hardship food (Rowley-Conwy 1980;
Deith 1983). For the southern California coast, it is often thought that greater reliance on the
ever available and easily exploited molluscs during the winter was necessitated by diminished
food stores during this “lean” season (e.g., Landberg 1965:76; Hudson 1969:53, 1971:70;
Drover 1974:229; Lyneis 1981:4). Winter has been viewed as the season of heightened shell-
fish procurement in several coastal Orange County settlement scenarios (Hudson 1969:53,
1971:70; Chace 1969:73, 1974; Anderson 1969:53; Lyneis 1981:4; see also Ross 1969) and in
some local shellfish seasonality studies (e.g., Weide 1969; Drover 1974; see also Lyons 1978).

A salient component of local subsistence-settlement research design is “scheduling” (e.g.,
Koerper 1981; de Barros and Koerper 1990; Mason 1991), or the organization and timing of
procurement activities when the ecosystem affords a choice of food resources (Flannery
1968). In Orange County archaeology, retrodiction of scheduling has involved visual observa-
tion of the sculpted surfaces of Chione clams in attempts to determine the season(s) when
these largely bay/estuary dwelling invertebrates were exploited (Chace 1969; Weide 1969;
Cooley 1971; Drover 1974; Lyons 1978; Howard 1977; Howard and Carter 1975). Visual
examination of external shell growth for seasonal determination has also been employed in
Los Angeles County (e.g., Carter 1978) and in Santa Barbara County (e.g., Macko 1983). The
collective results of these efforts generally supported the notion that much shellfishing activity
proceeded during cold months. However, the Drover (1974) and Lyons (1978) seasonality
techniques were critiqued in Koerper (1980) and Koerper et al. (1984), respectively, and found
problematic.
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Live growth studies on Chione clams indicate that seasonality determinations are not possible
for Chiones using external shell features (Cerreto 1988, 1992). Presently, seasonal patterns of
procurement for bay/estuary molluscan species remain an enigma.

Weide’s (1969) seasonality method applies to Tivela stultorum (Pismo clam), a sandy coastal
beach species, but Weide did not test the technique against specimens with known seasons of
death (Margaret Lyneis, personal communication 1994). Few Orange County shell middens
yield Pismo clams in numbers required for meaningful seasonality study.

We have employed stable isotope geochemistry, specifically, oxygen isometry, to analyze
calcite samples drilled from the surfaces of shells (see Killingley 1980, 1981). Here we report
the results of our stable isotope (18O/16O ratio) mass spectrometer assays to determine season
of procurement of 14 Mytilus californianus (California mussel) and two Protothaca staminea
(Littleneck clam) shells recovered from ORA-855, the historically recorded village of
Putuidem (Koerper et al. 1988) in the San Juan Capistrano Valley (Fig. 1). Gatherers from
Putuidem would have collected mussels from rocky shore locations and clams from sandy
beach locations at the open coast after first having followed the San Juan Creek watercourse
six kilometers to the Dana Cove region. These two species represent at least 90 percent of the
molluscan protein consumed at Putuidem (see Koerper et al. 1988). The data of this study
support the hypothesis that at ORA-855 shellfish collecting was probably a predominantly
summer and autumn activity.

CA-ORA-855

ORA-855, or Putuidem (see O’Neil and Evans 1980; O’Neil 1988), dates to the latter half of
the Late Prehistoric period, as determined by time sensitive artifacts (e.g., Sonoran projectile
points-see Koerper and Drover 1983 and Koerper et al. 1996; and Tizon Brown pottery-see
Koerper et al. 1978), radiocarbon dates (Koerper et al. 1988), and small hydration values (1.1-
2.0 microns) for 18 specimens of Obsidian Butte volcanic glass (Koerper et al. 1986). Sev-
enty-four of the 78 sourced obsidian specimens are from Obsidian Butte, but only four were
traded from the Coso Range (Ericson et al. 1989).

Putuidem was occupied during a cold weather downturn known as the Little Ice Age (LIA).
The LIA spanned roughly the A.D. 1400-1850 period (Calder 1975; Gribbin and Lamb 1978).
A record-by-proxy of prehistoric ocean surface temperatures at Dana Point was secured by
measuring the 18O content of calcite from Mytilus californianus shells excavated from
Putuidem. Surface water temperature was approximately 3.0°C colder than present tempera-
ture along the southern California coast, a fact consistent with LIA dating of ORA-855
(Koerper et al. 1985; Koerper et al. 1988). It is these same stable isotope data that are em-
ployed here to interpret seasonal pattern of shellfish procurement.
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The great variety of extraction and maintenance tools at Putuidem reflect a multitude of
economic activities. A broad base of subsistence resources is reflected in the invertebrate and
vertebrate faunal assemblages and in the many plant processing tools. The large numbers of
sociotechnic artifacts (especially beads), the several ideotechnic items, seven burial features,
and one possible cremation are additional data supporting the ethnohistoric evidence that
ORA-855 was a village and not a camp (Koerper et al. 1988).

Background to the Technique

The archaeological purposes to which 18O/16O analysis of marine shell is applied (e.g.,
Shackleton 1969, 1973; Kennett and Voorhies 1996; Kennett et al. 1997) depend upon the
isotopic composition of molluscan calcite being temperature dependent (Urey 1947), thus
permitting, when certain criteria are met (Shackleton 1973), a record-by-proxy of ocean
surface temperatures during the life of the animal (Epstein et al. 1951, 1953; Shackleton

Fig. 1. Location of CA-Ora-855
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1969). Soon after documentation that Mytilus californianus shells reflect changes in ambient
water temperature (Killingley and Berger 1979), Killingley (1980) employed mass spectrom-
etry to estimate time of death in prehistoric California mussel shells, later succinctly detailing
the requisites necessary to support meaningful seasonality results (1981; see also Bailey et al.
1983 and Killingley 1983).

First, the animal ideally deposits CaCO
3
 in thermodynamic equilibrium with the ambient

water. However, if the carbonate precipitation occurs out of equilibrium but the degree of
disequilibrium is constant, relative temperature changes can be generated.

Secondly, there should be no postdepositional changes in the isotopic composition (e.g.,
exchange of oxygen atoms with those of groundwater). If extraneous oxygen has contami-
nated the potential sample target, there are methods to remove those oxygen atoms. Contami-
nate avoidance of several types is discussed below.

Further, the shell must grow throughout the annual temperature range and should live in open
water rather than in locally confined areas (e.g., rock pools) where temperature changes would
be abnormal. M. californianus grows throughout the year in open water. Obviously, shellfish
within Newport Bay are confined in varying degrees, and they are not regarded as useful to
seasonality study through application of oxygen isometry. Also, reasonable estimates must be
available of the oxygen isotopic composition of the ocean water from which the shell is
precipitated.

Calcium carbonate is precipitated by molluscs from ions dissolved in sea water. As the reac-
tion occurs, calcium carbonate is enriched in 18O compared to the surrounding solution, with
the isotopic fractionation being temperature dependent. In other words, the 18O/16O ratio in the
water and the water temperature determine 18O/16O ratios in shell carbonates.

Increases in sea surface temperature (SST) shift thermodynamic equilibria, causing less of the
heavier isotope to be part of the precipitated carbonate. As the shell grows through seasons of
cold and warm, ratios of 18O/16O vary, being higher in cold months and lower in warm months,
thereby providing a record-by-proxy of SSTs and a means to estimate seasonality of
archaeologically recovered shells. It is crucial that 18O/16O ratios clearly differentiate between
carbonates precipitated in summer months and those deposited in winter months. Further, the
differential must be great enough that there be no confusion of seasonal fluctuations with
short term variations in a shell’s development. With the various requisites addressed for
mussels growing along the southern California coast, the object is to first remove calcite
samples starting from a shell’s terminal margin.
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Sample Selection

Shells selected for stable isotope analysis were characterized by sufficient growth manifested
in easily visible contiguous growth increments leading to an intact terminal margin. “Suffi-
cient growth” refers to a record of shell development from the ventral edge toward the umbo
that appeared to cover at least one year in the life of the animal. None of the specimens se-
lected gave any evidence of contaminants at the outer surface of the shell save for minor
amounts of adhering midden. Of the fourteen M. californianus shells that underwent analysis,
none was associated with any feature or had any special significance attached to it. They
represent a variety of unit level proveniences, tending toward lower depths where shells had
escaped damage from farm equipment.

Two Protothaca staminae shells were also selected for analysis. They were retrieved from a
feature which contained fish remains and many whole P. staminea shells. Undoubtedly, the
feature is a roasting pit, and the shells likely are from a single event. Thus, it was predicted
that the two specimens would evidence seasonal procurement at the same time.

Sample Preparation

Several steps precede removal of calcite samples for analysis by mass spectrometer. Speci-
mens must first be cleaned of debris and extraneous organic material adhering to their sur-
faces. When shells retain remnants of the periostracum, this contaminant along with debris
generally yields to mild washing with water and scraping. For this study, an ultrasonic bath
using deionized water proved efficacious. If, after washing, small amounts of organics should
remain, and once the shell is thoroughly dry, the same drill used to take the calcite samples,
when barely touched to resistant fragments of periostracum, usually causes these organics to
tear cleanly away from the shell.

Diagenesis introduces another source of contamination, one that injects an isotopically lighter
sample into shell surfaces. Shell surface carbonate is subject to dissolution and subsequent
recrystallization (Shackleton 1973; Bailey, et al. 1983). That is, chemical exchange occurs
with percolating groundwater. This alteration of a specimen’s isotopic signature is controlled
by careful removal of any lighter appearing calcite on the shell surface, again using a dental
bit.

Sequential growth increments were sampled beginning at a specimen’s ventral edge and
proceeding over the growth surface toward the umbo. The goal was to secure as many samples
deemed necessary to exceed at least one annual cycle of growth. A 0.5 mm dental drill re-
duced calcite samples to a fine powder. Target accuracy depends on locating growth lines
using a 10X to 20X binocular microscope. Viewing sampling through the microscope pre-
vented drilling too deeply and contaminating the sample with aragonite.
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There are two forms of calcium carbonate (CaCO
3
) in the crystal lattice of M. californianus.

An easily distinguished underlying aragonite layer (the nacreous layer) differs from calcite in
its orthorhombic crystallization, greater density, and less distinct cleavage; more importantly,
aragonite has a different δ18O enrichment factor than calcite.

Drilling turns calcite into a fine powder which is collected on glassine paper. We recommend
that each calcite sample be placed in a gel cap, and each gel cap be put into a Ziploc bag with
a white panel that can be labeled with specimen number, sample number, provenience, and
any other relevant information.

Sample Measurement

A mass spectrometer is used to determine the proportions of 18O and 16O. Data are reduced by
comparison to the isotopic signature of a Cretaceous belemnite from the Pee Dee formation in
South Carolina. Belemnite refers to a fossil shell of an extinct cephalopod of the family
Belemnitidae.

This international standard, then, provides an arbitrary reference point, or the zero line on the
scale, any deviation from which is designated by the “δ” symbol. Deviations are measured in
parts per thousand (per mil, ‰). Positive values indicate that a sample contains the heavier
isotope, in this case 18O, in excess of the standard, while negative values indicate a depletion
of the heavier isotope with respect to the conventional standard.

Measured δ18O values for a sample taken in sequence develop the profile of changing 18O/16O
ratios through the growth of a shell. These ratios mirror temperature variation as the shell
developed. The profile and especially the reading at the terminal margin of a shell offer the
wherewithal to estimate season of death.

During measurement of stable oxygen isotopes, δ13C values (measured with respect to the
PDB) were also established with the mass spectrometer to enable certain corrections to be
made to obtain accurate δ18O values (and vice versa). Data are reduced by comparison to the
carbon isotopic signature of the same belemnite standard. Variations in stable carbon isotopes
can be due to a variety of causes, including metabolic effects and changes in the ambient δ13C
levels of dissolved carbon in the water from which shell is precipitated. In coastal environs,
the dissolved carbon isotopes can be affected by input of terrestrial carbon with a light signal
(δ13C more negative) compared to ocean water (Killingley and Lutcavage 1983). Isotopically
light carbon can also be produced during ocean upwelling periods when nutrient rich waters
reach the surface (Killingley and Berger 1979). Consideration of the carbon isotopic values
presented here, referenced to the temperature fluctuations indicated by the oxygen isotopic
values, shows that in some shell specimens there appears to be a spring upwelling signal, but,
in general, there does not seem to be a coherent, interpretable, trend in these values. This may
imply that terrestrial input variations have “overprinted” the ocean δ13C signal.



PCAS Quarterly, 34(2), Spring 1998

Koerper and Killingley80

Results

Figures 2 through 5 plot the isotopic values of 18O and 13C for each Mytilus shell. These minus
and plus values, which are recorded on the vertical axis of these figures, are expressed in the
usual δ18O and δ13C notations with respect to the PDB standard (represented by the 0.0 value).
The measurements are precise to about 0.1‰. The horizontal axis of the several figures
represents distance (in mm) away from the terminal margin (death date) of the shellfish.

Plotting the values produces an approximation of a sine wave profile. Evaluations of the
isotopic signals, especially those at a shell’s terminal margin, take into consideration the fact
that range of SST may vary from year to year causing amplitude variations in the plotted δ18O
signals. Further, wave length shortens, a reflection of the fact that less shell is added with
increasing age of the mollusc. Wavelengths will vary between shells as a function of age
differences between the animals.

Interpretation depends significantly on whether the δ18O signal is on a trajectory of increase or
decrease as the profile of seasonal growth nears the terminal margin, or death “month” of the
shell. An increase in the δ18O signal (profile trajectory descending in our figures) indicates
decreasing SSTs, and a decrease in the δ18O signal (profile trajectory ascending in our figures)
indicates warmer SSTs.

Estimated season of procurement accompanies each shell profile figure. Table 1 and Figure 6
summarize the seasonal estimates. Any month designated as a time of shell death is best
regarded as a center point of a three month range of possibilities (see Deith 1988). If the
fourteen mussel shells are representative of the ORA-855 collection, then Mytilus collecting
was predominantly a summer and autumn activity.

It appears, preliminarily, that P. staminea growth is absent or greatly truncated in the winter
(Fig. 7). It may be that the major growth breaks always correspond to a winter break, but this
suggestion would have to be substantiated with research on modern shells.

Useful seasonality information might be possible in species that grow only part of the year,
providing that the annual “wavelength” is apparent. One concern is that if the range of isoto-
pic variation is small, the “noise” from other effects may be a problem. Another issue is that if
the “cool growth,” or winter, increment is small, then the observer may miss it in drilling a
sample.

The two Protothaca shells, specimens 15 and 16, seem to have grown only about 0.5 cm
during their final year, making resolution a problem. Smaller, younger, specimens, then,
would have been more useful. Tentatively, these limited clam data suggest a July and an
August procurement. Given the error factor in the method, it is probable that the two shells
were collected at the same time.
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Fig. 2. Seasonality data from Mytilus californianus: Specimens 1-4. Per mil values (minus and plus) on
the vertical axis are with reference to an international standard (represented by 0.0). The horizontal

axis represents distance in mm away from the terminal margin (death date) of the shellfish.
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Fig. 3. Seasonality data from Mytilus californianus: Specimens 5-8. Per mil values (minus and plus) on
the vertical axis are with reference to an international standard (represented by 0.0). The horizontal

axis represents distance in mm away from the terminal margin (death date) of the shellfish.
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Fig. 4. Seasonality data from Mytilus californianus: Specimens 9-12. Per mil values (minus and plus)
on the vertical axis are with reference to an international standard (represented by 0.0). The horizontal

axis represents distance in mm away from the terminal margin (death date) of the shellfish.
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Fig. 6. Seasonality plots by month.

Table 1. CA-Ora-855 Seasonality Data.

Specimen 
Number

Material Provenience,    
Unit

Provenience,     
Level

Seasonal 
Determination

1 Mytilus 90S/12W 50–60cm September

2 Mytilus 40S/7E 50–60cm December

3 Mytilus 90S/12W 50–60cm July

4 Mytilus 20N/9W 50–60cm August

5 Mytilus 90S/12W 60–70cm December

6 Mytilus 90S/12W 30–40cm October

7 Mytilus 40S/7E 50–60cm August

8 Mytilus 40S/7E 50–60cm September

9 Mytilus 90S/12W 40–50cm August

10 Mytilus 22S/38E 40–50cm November

11 Mytilus 90S/12W 40–50cm November

12 Mytilus 40S/7E 80–90cm October

13 Mytilus 10N/21E 30–40cm April

14 Mytilus 10N/21E 30–40cm June

15 Protothaca 40S/20W 60–70cm July

16 Protothaca 40S/20W 60–70cm August

Number of
shells

4

3

2

1

J        F        M        A        M        J        J        A        S        O        N        D         Month

Protothaca Staminea

Mytilus californianus
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Fig. 7. Seasonality data from Protothaca staminea: Specimens 15 and 16. Per mil values (minus and
plus) on the vertical axis are with reference to an international standard (represented by 0.0). The

horizontal axis represents distance in mm away from the terminal margin (death date) of the shellfish.
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Summary and Concluding Remarks

Of archaeologically recovered food evidence, saltwater molluscan remains, which preserve
well, may provide the most reliable seasonality data. Deith (1985:119) points out that
taphonomic processes are kinder to shell than to bone. Deith further notes the following: 1)
shellfish are available throughout the year; 2) consumption generally occurs almost simulta-
neous to the time of their gathering and death, or, in other words, they are unlikely to have
been stored for future use; 3) their relative immobility means that natural deaths occur within
the intertidal zone; their presence at archaeology sites is almost certainly attributable to
human activity since most other mammals have no interest in shellfish.

The only presently reliable seasonality method employing southern California molluscan
species and tested against knowns is stable isotope analysis, and, so far, oxygen isometry does
not support the old conventional view that winter was the season of heightened shellfish
procurement in coastal Orange County or other locations along the southern California and
Baja California coasts. At ORA-855, mussel collecting seems to have been predominantly a
summer and autumn activity. Previously, for LC-219 (Punta Minitas) in Baja California,
Killingley (1980:20) showed that mussel collecting “was most probable in mid-summer and
least likely in fall and winter.” A subsequent investigation of 29 Mytilus shells from ORA-660,
-662, -667, and -674 indicate Late Summer/Early Fall and Late Spring/Early Summer shell-
fish procurement (Ericson 1993). Ericson’s sample included remains from Millingstone and
Late Prehistoric sites. The most recent Orange County efforts (Dunbar et al. 1998) utilized
nine 4,000 year old mussel shells from ORA-1429, a Los Trancos Canyon fishing camp (see
Chace 1995), eight middle Late Prehistoric specimens from ORA-1404 located at Muddy
Canyon, and three early Millingstone period shells from ORA-64 at Newport Bay. Again, the
data do not indicate a quickened pace for rocky shores shellfishing during the coldest months.

This kind of periodicity of procurement is perhaps linked to the possibility that shellfish
gathering was an adjunct of fishing, which is less productive under winter conditions. If so,
forays into the marine zone may have been less frequent during the winter.

Analysis of 25 fish otoliths from ORA-855 reveals all but one were from the summer season
(mid-May to early October) (Huddleston 1988). Mid-October to early May is “winter” in the
parlance of otolith studies. Other Orange County otolith data likewise correlate cold months
with reduced fishing (Koerper 1981, 1995; Mason et al. 1997). The caveat here is that otoliths
recovered from local sites are predominantly from near shore species, and it is not certain, say,
that pelagic fishes were not being taken during winter.

Increased discomfort from cold may have made winter fishing and shellfishing less appealing
to Little Ice Age inhabitants at Putuidem. Sea surface temperatures averaging 3°C cooler than
today’s temperatures characterized shellfish habitats when ORA-855 was occupied (Koerper
et al. 1985).
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Winter was unlikely to have been lean in terms of animal protein. Rabbits would have been
abundant and easily taken with a variety of capture techniques, and deer would have been
available (P. Langenwalter, personal communication 1995).

Parenthetically, the mussel-poison dinoflagellate, Gonyaulax catenella (“red tide”), may have
had little or no effect on seasonal patterns of shellfishing. South of Point Concepcion, this
particular “red tide” is extremely rare (Hinton 1969:37). “Red tide” conditions due to exces-
sive phytoplankton production are more likely in the spring and early summer, thus winter
drop-offs or absence of Mytilus collection can not be accounted for by “red tide” blooms
(Killingley 1980:22).

The application of 18O/16O analysis using two Protothaca staminea specimens points up the
possibility that similar stable isotope analysis might be used productively with this species as
well as other kinds of clams. We hope that studies such as this one will encourage others in
the archaeological community who have not already done so to pursue seasonality determina-
tions by 18O/16O assay of calcite from mollusc shells.
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